Формула Шеннона

Наиболее широкое распространение при определении среднего количества информации, которое содержится в сообщениях от источников самой разной природы, получил подход. К Шеннона. Рассмотрим следующую ситуацию.
Источник передает элементарные сигналы k различных типов. Проследим за достаточно длинным отрезком сообщения. Пусть в нем имеется N1 сигналов первого типа, N2 сигналов второго типа, ..., Nk сигналов k-го типа, причем N1 + N2 + ... + Nk = N – общее число сигналов в наблюдаемом отрезке, f1, f2, ..., fk – частоты соответствующих сигналов. При возрастании длины отрезка сообщения каждая из частот стремится к фиксированному пределу, т.е.
lim fi = pi, (i = 1, 2, ..., k),
где рi можно считать вероятностью сигнала. Предположим, получен сигнал i-го типа с вероятностью рi, содержащий – log pi единиц информации. В рассматриваемом отрезке i-й сигнал встретится примерно Npi раз (будем считать, что N достаточно велико), и общая информация, доставленная сигналами этого типа, будет равна произведению Npi log рi. То же относится к сигналам любого другого типа, поэтому полное количество информации, доставленное отрезком из N сигналов, будет примерно равно

Чтобы определить среднее количество информации, приходящееся на один сигнал, т.е. удельную информативность источника, нужно это число разделить на N. При неограниченном росте приблизительное равенство перейдет в точное. В результате будет получено асимптотическое соотношение – формула Шеннона

В последнее время она стала не менее распространенной, чем знаменитая формула Эйнштейна Е = mc2. Оказалось, что формула, предложенная Хартли, представляет собой частный случай более общей формулы Шеннона. Если в формуле Шеннона принять, что
р1 = p2 = ... = рi = ... =pN = 1/N, то

Знак минус в формуле Шеннона не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность р, согласно определению, меньше единицы, но больше нуля. Так как логарифм числа, меньшего единицы, т.е. log pi – величина отрицательная, то произведение вероятности на логарифм числа будет положительным.
Кроме этой формулы, Шенноном была предложена абстрактная схема связи, состоящая из пяти элементов (источника информации, передатчика, линии связи, приемника и адресата), и сформулированы теоремы о пропускной способности, помехоустойчивости, кодировании и т.д.
В результате развития теории информации и ее приложений идеи Шеннона быстро распространяли свое влияние на самые различные области знаний. Было замечено, что формула Шеннона очень похожа на используемую в физике формулу энтропии, выведенную Больцманом. Энтропия обозначает степень неупорядоченности статистических форм движения молекул. Энтропия максимальна при равновероятном распределении параметров движения молекул (направлении, скорости и пространственном положении). Значение энтропии уменьшается, если движение молекул упорядочить. По мере увеличения упорядоченности движения энтропия стремится к нулю (например, когда возможно только одно значение и направление скорости). При составлении какого-либо сообщения (текста) с помощью энтропии можно характеризовать степень неупорядоченности движения (чередования) символов. Текст с максимальной энтропией – это текст с равновероятным распределением всех букв алфавита, т.е. с бессмысленным чередованием букв, например: ЙХЗЦЗЦЩУЩУШК ШГЕНЕЭФЖЫЫДВЛВЛОАРАПАЯЕЯЮЧБ СБСЬМ. Если при составлении текста учтена реальная вероятность букв, то в получаемых таким образом «фразах» будет наблюдаться определенная упорядоченность движения букв, регламентируемая частотой их появления: ЕЫТ ЦИЯЬА ОКРВ ОДНТ ЬЧЕ МЛОЦК ЗЬЯ ЕНВ ТША.
При учете вероятностей четырехбуквенных сочетаний текст становится настолько упорядоченным, что по некоторым формальным признакам приближается к осмысленному: ВЕСЕЛ ВРАТЬСЯ НЕ СУХОМ И НЕПО И КОРКО. Причиной такой упорядоченности в данном случае является информация о статистических закономерностях текстов. В осмысленных текстах упорядоченность, естественно, еще выше. Так, в фразе ПРИШЛ... ВЕСНА мы имеем еще больше информации о движении (чередовании) букв. Таким образом, от текста к тексту увеличиваются упорядоченность и информация, которой мы располагаем о тексте, а энтропия (мера неупорядоченности) уменьшается.
Используя различие формул количества информации Шеннона и энтропии Больцмана (разные знаки), Л. Бриллюэн охарактеризовал информацию как отрицательную энтропию, или негэнтропию. Так как энтропия является мерой неупорядоченности, то информация может быть определена как мера упорядоченности материальных систем.
В связи с тем, что внешний вид формул совпадает, можно предположить, что понятие информация ничего не добавляет к понятию энтропии. Однако это не так. Если понятие энтропии применялось ранее только для систем, стремящихся к термодинамическому равновесию, т.е. к максимальному беспорядку в движении ее составляющих, к увеличению энтропии, то понятие информации обратило внимание и на те системы, которые не увеличивают энтропию, а наоборот, находясь в состоянии с небольшими значениями энтропии, стремятся к ее дальнейшему уменьшению.

Трудно переоценить значение идей теории информации в развитии самых разнообразных научных областей.
Однако, по мнению К. Шеннона, все нерешенные проблемы не могут быть решены при помощи таких магических слов, как «информация», «энтропия», «избыточность».
Теория информации основана на вероятностных, статистических закономерностях явлений. Она дает полезный, но не универсальный аппарат. Поэтому множество ситуаций не укладываются в информационную модель Шеннона. Не всегда представляется возможным заранее установить перечень всех состояний системы и вычислить их вероятности. Кроме того, в теории информации рассматривается только формальная сторона сообщения, в то время как смысл его остается в стороне. Например, система радиолокационных станций ведет наблюдение за воздушным пространством с целью обнаружения самолета противника Система S, за которой ведется наблюдение, может быть в одном из двух состояний x1 – противник есть, x2 – противника нет. Важность первого сообщения нельзя оценить с помощью вероятностного подхода. Этот подход и основанная на нем мера количества информации выражают, прежде всего, «структурно-синтаксическую» сторону ее передачи, т.е. выражают отношения сигналов. Однако понятия «вероятность», «неопределенность», с которыми связано понятие информации, предполагают процесс выбора. Этот процесс может быть осуществлен только при наличии множества возможностей. Без этого условия, как можно предположить, передача информации невозможна.